У нас вы можете посмотреть бесплатно Genspark’s Wen Sang: Super Agents, PLG, and Token Economics или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Host Hash Pakbaz (SF Chapter Lead at The AI Collective) sits down with Wen Sang, Co-Founder and COO at Genspark, for a fast, candid chat on why AI agents change how knowledge work gets done. Wen shares the founder journey, the thinking behind “work done, not tools,” how PLG met enterprise needs, and why model orchestration and cost control matter. 🔥 Key Highlights: – From MIT PhD to 10-year founder to Genspark COO – Wen’s path and timing for jumping into agents. – “Pick the right problem” – how they sized the market and why knowledge workers came next after dev tools. – From search to “work done” – the shift from apps to agents and a token-based cost model. – PLG to enterprise pull – word of mouth growth, then SOC 2, ISO 27001, and GDPR requests from big customers. – Model orchestration in practice – using the right model for the job to balance quality and cost. – Shipping fast with AI-native development – 80% of code generated by AI, humans own taste and architecture. – Agentic memory and integrations – Slack, Google, Microsoft, Notion, and hundreds of MCP tools to cut context switching. 🔗 Helpful Resources: – Genspark: https://www.genspark.ai/ – The AI Collective: / aicollective – The AI Collective Events Calendar: https://luma.com/genai-collective ⏱️ Timestamps/Chapters (optional): 00:00 - Intro and guest background 01:10 - Founder journey and previous exit 02:30 - Why agents now and picking the right problem 04:40 - From search to “work done” and the token model 07:50 - Microsoft 365 baseline and how AI changes the business model 09:55 - Pricing, credits, and COGS with LLM APIs 11:50 - Adoption outside Silicon Valley and global anecdotes 13:05 - B2C to B2B pull, compliance, and enterprise asks 15:30 - Government and global interest, real user stories 18:30 - Competitive landscape and “no moat, ship weekly” mindset 21:45 - Tech stack layers and model selection for tasks 23:10 - Product prioritization and retention as a north star 25:00 - Early career advice in an AI-first world 26:50 - What success looks like at Genspark 27:20 - Humans as directors, AI as actors – long-term view of work 29:55 - Agentic memory and deep integrations 31:35 - Cost vs performance, picking the right model for the job 33:40 - Closing thanks 👉 If you enjoyed the discussion, be sure to like the video, share your favorite insights in the comments, and subscribe to stay updated on our latest talks and demos! 🔗 Follow us for more: – LinkedIn (Dmytro): / spodarets – LinkedIn (Data Phoenix): / data-phoenix – YouTube (Events): / dataphoenixevents – YouTube (Dmytro): / @dmytrospodarets – Twitter/X: https://x.com/Data_Phoenix – Telegram: https://t.me/DataPhoenix – Facebook: / dataphoenix.info – Website: https://dataphoenix.info/