У нас вы можете посмотреть бесплатно CRISPR Technology and Acute Myeloid Leukemia или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we will highlight what CRISPR technology is, and the connection it has to acute myeloid leukemia, also known as AML. We will do so by first breaking down what CRISPR technology is, and how it functions. Then, using a real-life example of acute myeloid leukemia, or AML, we will go into more depth of how CRISPR technology is used to diagnose and treat AML. Despite the remarkable capabilities of this technology, it does come with its limitations which we will also discuss, in addition to some possible future directions. This video was made by McMaster University students Dhruvil Gore, Adam Ismael, Mahima Joshi, and Anupama Munaweera in collaboration with the Demystifying Research Mcmaster Program. We would like to thank Dr. Ayoub, instructional team and our class members for their support and insight feedback throughout this process. Copyright McMaster University 2022 References Abebe, E. C., Sisay, T., Berhane, N., Tesfahun Bekele, S., & Dejenie, T. A. (2021). Current Applications and Future Perspectives of CRISPR-Cas9 for the Treatment of Lung Cancer. Biologics: Targets & Therapy, 15, 199. https://doi.org/10.2147/BTT.S310312 Cao, Z., Budinich, K. A., Huang, H., Ren, D., Lu, B., Zhang, Z., ... & Shi, J. (2021). ZMYND8-regulated IRF8 transcription axis is an acute myeloid leukemia dependency. Molecular cell, 81(17), 3604-3622. https://doi.org/10.1016/j.molcel.2021... CRISPR. New Scientist. (n.d.). Retrieved November 10, 2022, from https://www.newscientist.com/definiti... CRISPR/Cas9. CRISPR. (n.d.). Retrieved November 10, 2022, from https://crisprtx.com/gene-editing/cri... Lin, S., Larrue, C., Scheidegger, N. K., Seong, B. K. A., Dharia, N. V., Kuljanin, M., ... & Stegmaier, K. (2022). An in vivo CRISPR screening platform for prioritizing therapeutic targets in AML. Cancer discovery, 12(2), 432-449. https://doi.org/10.1158/2159-8290.CD-... Penn medicine.org. (n.d.). Retrieved November 10, 2022, from https://www.pennmedicine.org/news/new... Roberts, R. (2021). CRISPR CAR-T cells: Edited T Cells Are Revolutionizing Cancer Treatment. Synthego. Retrieved October 30, 2022, from https://www.synthego.com/blog/car-t-c... Tasian, S. K. (2018). Acute myeloid leukemia chimeric antigen receptor T-cell immunotherapy: how far up the road have we traveled?. Therapeutic advances in hematology, 9(6), 135-148. https://doi.org/10.1177/204062071877426 Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR gene therapy: applications, limitations, and implications for the future. Frontiers in oncology, 10, 1387. https://doi.org/10.3389/fonc.2020.01387 Yamauchi, T., Masuda, T., Canver, M. C., Seiler, M., Semba, Y., Shboul, M., ... & Maeda, T. (2018). Genome-wide CRISPR-Cas9 screen identifies leukemia-specific dependence on a pre-mRNA metabolic pathway regulated by DCPS. Cancer cell, 33(3), 386-400. https://doi.org/10.1016/j.ccell.2018....