У нас вы можете посмотреть бесплатно DOE CSGF 2013: Mathematical Modeling of Pharmaceuticals:Predictive Design for Better Medicines или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
View more information on the DOE CSGF Program at http://www.krellinst.org/csgf Ashlee Ford Versypt Postdoctoral Researcher, Department of Chemical Engineering, Massachusetts Institute of Technology Smart designs of drug molecules and pharmaceutical formulations can target treatments to specific tissues, reduce side effects, and improve patient quality of care. Computational models for evaluating pharmaceutical formulations can narrow the range of experiments needed to identify successful designs by predicting performance, thus reducing development time and driving down costs. Models coupled with sophisticated process control strategies allow for careful manufacturing monitoring to reduce materials and energy waste and adhere to quality standards. I will overview mathematical modeling efforts in several pharmaceutical domains and highlight work related to predicting drug release from controlled-release formulations that administer medicine over extended periods with a single dose. I will show how coupled, nonlinear partial differential equations can be used to capture the complex dynamic interactions between simultaneous chemical reactions and mass transfer. I will describe mathematical techniques that can reduce the system size from thousands of equations to just a few while still resolving biodegradation of the pharmaceutical formulation that strongly influences drug release dynamics. These techniques can help design improved controlled-release formulations.