У нас вы можете посмотреть бесплатно Why Strength Doesn’t Translate to Performance (According to Science) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Getting stronger does not automatically mean performing better. In this video, we explore why increases in maximal strength often fail to fully transfer to sport performance, even in well-trained athletes. Using evidence from neuromuscular physiology, biomechanics, and applied sport science, we break down the key mechanisms that limit transfer, including: • Force–time characteristics and rate of force development (RFD) • Velocity and contraction specificity • Joint-angle and task specificity • Neural coordination and co-activation • Tendon behavior and elastic contributions We also discuss when strength training does enhance performance, and why its effectiveness depends on how force is produced, transmitted, and expressed in sport-specific contexts. This is not an argument against strength training. Strength is essential — but it is not sufficient on its own. If you’re interested in evidence-based training and performance science, consider subscribing for more research-driven content. • Burnie, L., Barratt, P., Davids, K., Worsfold, P., & Wheat, J. (2022). Effects of strength training on the biomechanics and coordination of short-term maximal cycling. Journal of Sports Sciences. • Duchateau, J., & Amiridis, I. G. (2023). Plyometric exercises: Optimizing the Transfer of Training Gains to Sport Performance. Exercise and Sport Sciences Reviews. • Haugen, T. A., Breitschädel, F., & Seiler, S. (2019). Sprint mechanical variables in elite athletes: Are force-velocity profiles sport specific or individual? PLoS ONE, 14(7), e0215551. • Lanza, M. B., Balshaw, T. G., & Folland, J. P. (2019). Is the joint-angle specificity of isometric resistance training real? And if so, does it have a neural basis? European Journal of Applied Physiology, 119, 2465–2476. • Lecce, E., Amoruso, P., Felici, F., & Bazzucchi, I. (2025). Resistance training-induced adaptations in the neuromuscular system: Physiological mechanisms and implications for human performance. The Journal of Physiology, 1-35. • Van Hooren, B., Aagaard, P., & Blazevich, A. J. (2024). Optimizing Resistance Training for Sprint and Endurance Athletes: Balancing Positive and Negative Adaptations. Sports Medicine, 54(12), 3019–3050. • Van Dyke, M. (s.f.). Rate of force development (RFD) and Co-activation. • Young, W. B. (2006). Transfer of strength and power training to sports performance. International Journal of Sports Physiology and Performance, 1(2), 74-83. #strengthtraining #sportsperformance #exercisescience #humanperformance #biomechanics #rfd #evidencebasedtraining #performancescience